无数据知识蒸馏(DFKD)最近一直吸引了研究社区的越来越关注,归因于其仅使用合成数据压缩模型的能力。尽管取得了令人鼓舞的成果,但最先进的DFKD方法仍然患有数据综合的低效率,使得无数据培训过程非常耗时,因此可以对大规模任务进行不适当的。在这项工作中,我们介绍了一个被称为FastDFKD的有效方案,使我们能够将DFKD加速到数量级。在我们的方法中,我们的方法是一种重用培训数据中共享共同功能的新策略,以便综合不同的数据实例。与先前的方法独立优化一组数据,我们建议学习一个Meta合成器,该综合仪寻求常见功能作为快速数据合成的初始化。因此,FastDFKD仅在几个步骤内实现数据综合,显着提高了无数据培训的效率。在CiFAR,NYUV2和Imagenet上的实验表明,所提出的FastDFKD实现了10美元\时代$甚至100美元\倍$加速,同时保持与现有技术的表现。
translated by 谷歌翻译
In this paper, we propose a novel architecture, the Enhanced Interactive Transformer (EIT), to address the issue of head degradation in self-attention mechanisms. Our approach replaces the traditional multi-head self-attention mechanism with the Enhanced Multi-Head Attention (EMHA) mechanism, which relaxes the one-to-one mapping constraint among queries and keys, allowing each query to attend to multiple keys. Furthermore, we introduce two interaction models, Inner-Subspace Interaction and Cross-Subspace Interaction, to fully utilize the many-to-many mapping capabilities of EMHA. Extensive experiments on a wide range of tasks (e.g. machine translation, abstractive summarization, grammar correction, language modelling and brain disease automatic diagnosis) show its superiority with a very modest increase in model size.
translated by 谷歌翻译
We propose the first joint audio-video generation framework that brings engaging watching and listening experiences simultaneously, towards high-quality realistic videos. To generate joint audio-video pairs, we propose a novel Multi-Modal Diffusion model (i.e., MM-Diffusion), with two-coupled denoising autoencoders. In contrast to existing single-modal diffusion models, MM-Diffusion consists of a sequential multi-modal U-Net for a joint denoising process by design. Two subnets for audio and video learn to gradually generate aligned audio-video pairs from Gaussian noises. To ensure semantic consistency across modalities, we propose a novel random-shift based attention block bridging over the two subnets, which enables efficient cross-modal alignment, and thus reinforces the audio-video fidelity for each other. Extensive experiments show superior results in unconditional audio-video generation, and zero-shot conditional tasks (e.g., video-to-audio). In particular, we achieve the best FVD and FAD on Landscape and AIST++ dancing datasets. Turing tests of 10k votes further demonstrate dominant preferences for our model. The code and pre-trained models can be downloaded at https://github.com/researchmm/MM-Diffusion.
translated by 谷歌翻译
Given a natural language that describes the user's demands, the NL2Code task aims to generate code that addresses the demands. This is a critical but challenging task that mirrors the capabilities of AI-powered programming. The NL2Code task is inherently versatile, diverse and complex. For example, a demand can be described in different languages, in different formats, and at different levels of granularity. This inspired us to do this survey for NL2Code. In this survey, we focus on how does neural network (NN) solves NL2Code. We first propose a comprehensive framework, which is able to cover all studies in this field. Then, we in-depth parse the existing studies into this framework. We create an online website to record the parsing results, which tracks existing and recent NL2Code progress. In addition, we summarize the current challenges of NL2Code as well as its future directions. We hope that this survey can foster the evolution of this field.
translated by 谷歌翻译
In multi-agent reinforcement learning (MARL), many popular methods, such as VDN and QMIX, are susceptible to a critical multi-agent pathology known as relative overgeneralization (RO), which arises when the optimal joint action's utility falls below that of a sub-optimal joint action in cooperative tasks. RO can cause the agents to get stuck into local optima or fail to solve tasks that require significant coordination between agents within a given timestep. Recent value-based MARL algorithms such as QPLEX and WQMIX can overcome RO to some extent. However, our experimental results show that they can still fail to solve cooperative tasks that exhibit strong RO. In this work, we propose a novel approach called curriculum learning for relative overgeneralization (CURO) to better overcome RO. To solve a target task that exhibits strong RO, in CURO, we first fine-tune the reward function of the target task to generate source tasks that are tailored to the current ability of the learning agent and train the agent on these source tasks first. Then, to effectively transfer the knowledge acquired in one task to the next, we use a novel transfer learning method that combines value function transfer with buffer transfer, which enables more efficient exploration in the target task. We demonstrate that, when applied to QMIX, CURO overcomes severe RO problem and significantly improves performance, yielding state-of-the-art results in a variety of cooperative multi-agent tasks, including the challenging StarCraft II micromanagement benchmarks.
translated by 谷歌翻译
Visual place recognition (VPR) is usually considered as a specific image retrieval problem. Limited by existing training frameworks, most deep learning-based works cannot extract sufficiently stable global features from RGB images and rely on a time-consuming re-ranking step to exploit spatial structural information for better performance. In this paper, we propose StructVPR, a novel training architecture for VPR, to enhance structural knowledge in RGB global features and thus improve feature stability in a constantly changing environment. Specifically, StructVPR uses segmentation images as a more definitive source of structural knowledge input into a CNN network and applies knowledge distillation to avoid online segmentation and inference of seg-branch in testing. Considering that not all samples contain high-quality and helpful knowledge, and some even hurt the performance of distillation, we partition samples and weigh each sample's distillation loss to enhance the expected knowledge precisely. Finally, StructVPR achieves impressive performance on several benchmarks using only global retrieval and even outperforms many two-stage approaches by a large margin. After adding additional re-ranking, ours achieves state-of-the-art performance while maintaining a low computational cost.
translated by 谷歌翻译
Topological data analysis (TDA) is a branch of computational mathematics, bridging algebraic topology and data science, that provides compact, noise-robust representations of complex structures. Deep neural networks (DNNs) learn millions of parameters associated with a series of transformations defined by the model architecture, resulting in high-dimensional, difficult-to-interpret internal representations of input data. As DNNs become more ubiquitous across multiple sectors of our society, there is increasing recognition that mathematical methods are needed to aid analysts, researchers, and practitioners in understanding and interpreting how these models' internal representations relate to the final classification. In this paper, we apply cutting edge techniques from TDA with the goal of gaining insight into the interpretability of convolutional neural networks used for image classification. We use two common TDA approaches to explore several methods for modeling hidden-layer activations as high-dimensional point clouds, and provide experimental evidence that these point clouds capture valuable structural information about the model's process. First, we demonstrate that a distance metric based on persistent homology can be used to quantify meaningful differences between layers, and we discuss these distances in the broader context of existing representational similarity metrics for neural network interpretability. Second, we show that a mapper graph can provide semantic insight into how these models organize hierarchical class knowledge at each layer. These observations demonstrate that TDA is a useful tool to help deep learning practitioners unlock the hidden structures of their models.
translated by 谷歌翻译
我们考虑从分布强化学习中学习一组概率分布的问题(RL),该学位与仅在经典RL中的期望相比,学习了整个返回分布。尽管它成功地获得了卓越的性能,但我们仍然对分布RL中的价值分布的工作方式有糟糕的了解。在这项研究中,我们通过在神经拟合z-材料〜(Neural FZI)框架中的其他价值分布信息的杠杆作用来分析分布RL的优化益处。首先,我们证明了分布RL的分布损失具有理想的平滑性特征,因此具有稳定的梯度,这与促进优化稳定性的趋势一致。此外,分布RL的加速效应是通过分解返回分布来揭示的。事实证明,如果合适的值分布近似值,则分布RL可以表现出色,该分布由每个特定分布RL算法中每个环境中梯度估计的方差衡量。严格的实验验证了分布RL的稳定优化行为,与经典RL相比,其加速效应有助于其加速作用。我们研究的发现阐明了分布RL算法中的价值分布如何有助于优化。
translated by 谷歌翻译
在本文中,我们提出了广义参数对比度学习(GPACO/PACO),该学习在不平衡和平衡数据上都很好地工作。基于理论分析,我们观察到,受监督的对比损失倾向于偏向高频类别,从而增加了学习不平衡的学习难度。我们从优化的角度介绍了一组参数班的可学习中心,以重新平衡。此外,我们在平衡的环境下分析了GPACO/PACO损失。我们的分析表明,GPACO/PACO可以适应地增强同一等级样品的强度,因为将更多的样品与相应的中心一起拉在一起并有益于艰难的示例学习。长尾基准测试的实验表明了长尾识别的新最先进。在完整的Imagenet上,与MAE模型相比,从CNN到接受GPACO损失训练的视觉变压器的模型显示出更好的泛化性能和更强的鲁棒性。此外,GPACO可以应用于语义分割任务,并在4个最受欢迎的基准测试中观察到明显的改进。我们的代码可在https://github.com/dvlab-research/parametric-contrastive-learning上找到。
translated by 谷歌翻译
预先训练的图像文本模型(如剪辑)已经证明了从大规模的Web收集的图像文本数据中学到的视觉表示的强大力量。鉴于学习良好的视觉特征,一些现有的作品将图像表示转移到视频域并取得良好的结果。但是,如何利用图像语言预训练的模型(例如,剪辑)进行视频培训(后培训)仍在探索。在本文中,我们研究了两个问题:1)阻碍后期剪辑的因素是什么因素,以进一步提高视频语言任务的性能? 2)如何减轻这些因素的影响?通过一系列比较实验和分析,我们发现语言源之间的数据量表和域间隙具有很大的影响。由这些动机,我们提出了一种配备了视频代理机制的Omnisource跨模式学习方法,即剪辑,即剪辑VIP。广泛的结果表明,我们的方法可以提高视频检索的剪辑的性能。我们的模型还可以在包括MSR-VTT,DIDEMO,LSMDC和ActivityNet在内的各种数据集上实现SOTA结果。我们在https://github.com/microsoft/xpretrain/tree/main/main/main/clip-vip上发布了代码和预训练的剪辑模型。
translated by 谷歌翻译